Module Il CST 306 - Algorithm Analysis and Design(56 CSE)
Module III
¢ Divide & Conquer and Greedy Strategy
o The Control Abstraction of Divide and Conquer
o 2-way Merge sort
o Strassen’s Algorithm for Matrix Multiplication-Analysis

The Control Abstraction of Greedy Strategy

Fractional Knapsack Problem

Minimum Cost Spanning Tree Computation- Kruskal’s Algorithms — Analysis
Single Source Shortest Path Algorithm - Dijkstra’s Algorithm-Analysis

o o0 O O

e Divide and Conquer
o Divide and conquer algorithm is having three parts:
1. Divide the problem into a number of sub-problems that are smaller instances of the same
problem.
2. Conquer the sub-problems by solving them recursively. If they are small enough, solve
the sub-problems as base cases.
3. Combine the solutions to the sub-problems into the solution for the original problem.

divide

solve solve

conquer
9 subproblem

solution to
subproblem

combine

solution to
problem

o Control Abstraction: It is a procedure whose flow of control is clear but whose primary
operations are specified by other procedure whose precise meanings are left undefined.
o Control Abstraction: Divide and Conquer

Algorithm DAndC(P)
{
if Small(P) then
return S(P)
else
{
Divide P into smaller instances Py, Po, . ... Py, k>1;
apply DAndC to each of these sub-problems;
return Combine(DAndC(P;), DAndC(P>), . . .., DAndC(Py));
}

}

= If the given problem is small, return the result
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®  Otherwise, divide the problem into smaller instances Py, P, . ... Py
* Apply DAndC() to each of these sub-problems.
* Finally combine the results of all sub-problems.

* DANdC() can be described using the following recurrence relation:
g(n) n is small
T(n) =
T(ng) +T(mp) +... .. + T(ny) + f(n) Otherwise

e T(n): Time for divide and conquer on any input of size n
e f(n): Complexity of dividing the problem and combining the results.
* Complexity of many divide and conquer algorithms are given by the following recurrence
relation
T(1) n=1
T(n) =
aT(n/b) + f(n) n>1

o 2 Way Merge Sort
= Given a sequence of n elements a[l],......a[n]. Split this array into two sets a[l],,.a.[n/2]
and a[(n/2)+1],...a[n]. Each set is individually sorted, and the resulting sorted sequences
are merged to produce a single sorted sequence of n element.

Algorithm MergeSort(low, high)

{
mid = (low + high )/2;
MergeSort(low, mid);
MergeSort(mid+1, high);
Merge(low, mid, high);

}

Algorithm Merge(low, mid, high)

{

i= low; x= low; y=mid + 1;
while((x < mid) and (y < high)) do

{
if (a[x] <aly] ) then
{
b[i] = a[x];
X =x+1;
}
else
{
b[i] = aly];
y=yth
}
i=i+1;
}
if( x <mid) then
{
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for k=x to mid do
{
b[i] = a[k];
i=i+1;
}
}
else
{
for k=y to high do
{
b[i] = a[k];
i=i+1;
}
}
for k= low to high do
a[k] = blk];
}
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= Complexity
T(n) = a if n=1

2 T(n/2) + cn Otherwise
a is the time to sort an array of size 1
cn is the time to merge two sub-arrays
2 T(n/2) is the complexity of two recursion calls

T(n) =2TW2)+cn

= 2(2 T(W4)+c(n/2)) + ¢ n
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=2°T(n/2*) +2cn
=2’T/2* +3cn
=2"T(/2") + k ¢ n [Assume that 2 =n = k=log n]
=nT(1)+cnlogn
=an+cnlogn
=0(n log n)

Best Case, Average Case and Worst Case Complexity of Merge Sort = O(n log n)

o Divide and Conquer Matrix Multiplication
= Native matrix multiplication complexity = O(n%)

* Divide and Conquer Matrix Multiplication Algorithm

1.
2.

w

We have to compute the product of 2 nxn matrices A and B.
Assume that n is the power of 2. That is n=2"
If n is not a power of 2, then enough rows and columns of 0’s can be added to both A
and B so that the resulting dimensions are the power of two.
Then partition A and B into 4 square matrices, each of size n/2 x n/2
AB can be computed using the formula

Cu=AunBu+ApBy

C=AnBp+ApBxy

C21 = Ay By + Ay By

Cx»=AnBp+AxnBx
If n=2, these formulas are computed using a multiplication operation for the elements
of Aand B
If n>2, the elements of C can be computed using matrix multiplications and addition
operations applied to the matrices of size n/2 x n/2
This algorithm will continue applying itself to smaller sized sub-matrices until n
becomes suitably small(n=2) so that the product is computed directly.

* Complexity

For multiplying two matrices of size n x n, we make 8 recursive calls above, each on a
matrix with size n/2 x n/2.
Addition of two matrices takes O(n?) time.
Time complexity = 8 T(1/2) + O(n?)
=0®’) [By Master’s Theorem]|

o Strassen’s Matrix Multiplication
* Algorithm

1.
2.

3.

A and B are the matrices with dimension nxn

If n is not a power of 2, then enough rows and columns of 0’s can be added to both A and B
so that the resulting dimensions are the power of two.

Partition A and B in to 4 square matrices of size n/2 x n/2
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a, b, c and d are sub-matrices of A, of size n/2 x n/2
e, f, g and h are sub-matrices of B, of size n/2 x n/2
4. Compute 7 n/2 x n/2 matrices

Pi=a(f-h)
P,=h(a+bh)
Ps=e(c+d)
P,=d(g—e)

Ps=(a+d)(e+h)
Ps=(b-d)(g+h)
P;=(@a-c)(e+9
It requires 7 matrix multiplications and 10 matrix additions and subtractions
5. Then compute C

C G
C=

C G
61:P4+P5+P5—P2
CZZP1+P2

C;=P3+Py
C4:P1—P3+P5—P?

= Complexity
e For multiplying two matrices of size n X n, we make 7 matrix multiplications and 10
matrix additions and subtractions
e Addition/Subtraction of two matrices takes O(n°) time.
e Time complexity =7 T(1/2) + O(n%)

= OM"*") = O(m**) [By Master’s Theorem]
e T(n)= b if n<2
7 T(n/2) + ¢ n? Otherwise

T(n) =7T@w2)+cn’
= 7’T(w/2%) + 7 c n’/4 + c
= 7°T(/2%) + 72 c n%/4*+ 7 cn’/4 + c n?

= 75T + (74 en®+ .. .. .. +(7/4) c n’+ c n’

= 75T(/2%) + [1+(7/4) +. . . . .. + (7545 Jcn?

<7 T(/2%) + [1+(7/4) +. oo Jen?

= 7*T(0/2%) + [1/(1-(7/4))] ¢ n°

= 7"°8"(1) -[4/3] ¢ n? [Assume that n/2" = 1 > k = log n]

= n'870(1) -[4/3] ¢ n?
— O(nlug ?) — O(HE.BI)
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o Example
1. Multiply the following two matrices using Strassen’s Matrix Multiplication Algorithm

I

¢ Greedy Strategy
o Control Abstraction

Greedy(a, n) //a[l..n] contains n inputs
{
solution = @;
for i=1to ndo
{
x = Select(a);
if Feasible(solution, x) then
solution = Union(solution, x);
}
return solution;
}

* Select() selects an input from the array a[] and remove it. The selected input value is
assigned to Xx.

= Feasible() is a Boolean valued function that determines whether x can be included into the
solution subset.

= Union() combines x with the solution and updates the objective function.

e Fractional Knapsack Problem
o We are given with n objects and a knapsack(or bag) of capacity m. The object i has weight W;
and profit P;. If a fraction X; is placed into the knapsack, then a profit P;X; is obtained. The
objective is to obtain an optimal solution of the knapsack that maximizes the total profit
earned.
o The total weight of all the chosen objects should not be more than m.
o Fractional knapsack problem can be stated as

Maximize Y7, PiXi @

Subject to 2. WiXi <m @

0<Xi<land1<i<n @

The profits and weights are positive numbers.

A feasible solution is one that satisfies equation 2 and 3.

An optimal solution is a feasible solution that satisfies equation 1.

In greedy strategy we are arranging the objects in the descending order of profit/weight.
Algorithm

o o C O

Algorithm GreedyKnapsack(m, n)
//p[1:n] is the profits and w[1:n] is the weights of n objects such that p[i]/w[i] = p[i+1]/w[i+1].
{
fori=1tondo
x[i] = 0.0; // Xx[1:n] is the solution vector
U=m; // m is the knapsack capacity
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for i=1 to n do
{
if w[i] > U then
break;
x[i] = 1.0
U=U-wli];
}
If1<nthen
x[i] = U/ wlil;
}

o Time Complexity
= The for loop will execute maximum n times. So the time complexity = O(n)

o Example
1. Find the optimal solution for the following fractional Knapsack problem. n=7, m=15,

P={10, 5, 15, 7, 6, 18, 3} and W={2, 3, 5, 7, 1, 4, 1}
e Arrange the objects in the descending order of profit/weight

i ={ 1, 2, 3, 4, 5, 6, 7}

P ={ 10, 5, 15, 7, 6, 18, 3}

w = 2, 3, 5, 7, 1, 4, 1}

Pi/Wi={ 5, 1.66, 3, 1 6, 4.5, 3}

Now the i, P and W arrays are

i ={5, 1, 6, 3, , 4}

P ={6, 10, 18, 15, 3, 5, 7}

w o ={1, 2 4, 5, 1, 3, 7}

Initially U=m=15

3

~J
NI

Item Pi Wi Xi U = U-Wi
5 6 1 1 14

1 10 2 1 12

6 18 4 1 8

3 15 5 1 3

7 3 1 1 2

2 5 3 2/3 0

4 7 7 0 0

e Total weight of the chosen objects are
P WiXi =2x1 +3x2/3 +5x1 + 7x0 +1x1 +4x1 + 1x1 =15
e Profit earned is 2,7 PiXi = 10x1 + 5x2/3 + 15x1 + 7x0 + 6x1 + 18x1 + 3x1 = 55.33
e Solution vector X={1, 2/3,1,0, 1, 1, 1}
o Examples

1. Find the optimal solution for the following fractional Knapsack problem. Given number
of items(n)=4, capacity of sack(m) = 60, W={40,10,20,24} and P={280,100,120,120}

2. Find an optimal solution to the fractional knapsack problem for an instance with number
of items 7, Capacity of the sack W=15, profit associated with the items (pl,p2,...,p7)=
(10,5,15,7,6,18,3) and weight associated with each item (wl,w2,...,.w7)=(2,3,5,7,1,4,1).

¢ Spanning Trees

o A spanning tree is a subset of undirected connected Graph G=(V,E), which has all the vertices
covered with minimum possible number of edges.
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A

Graphy \
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Spanning Trees
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o Properties of Spanning Tree
= A connected graph G can have more than one spanning tree.
= All possible spanning trees of graph G, have the same number of edges and vertices.
* The spanning tree does not have any cycle (loops)
= Removing one edge from the spanning tree will make the graph disconnected, i.e. the
spanning tree is minimally connected
* Adding one edge to the spanning tree will create a circuit or loop, i.e. the spanning tree is
maximally acyclic
= Spanning tree has n-1 edges, where n is the number of nodes.
o Maximum number of Spanning Trees of a graph with n nodes
= Complete Graph: n™?
»  Other Graphs
1. Create Adjacency Matrix for the given graph.
2. Replace all the diagonal elements with the degree of nodes.
3. Replace all non-diagonal 1’s with -1.
4. Total number of spanning tree for that graph = Co-factor for any element in that
matrix.
o Minimum Spanning Tree (MST)
* [In a weighted graph, a minimum spanning tree is a spanning tree that has minimum
weight than all other spanning trees of the same graph.
= In real-world situations, this weight can be measured as distance, congestion, traffic load
or any arbitrary value denoted to the edges.
* Minimum Spanning-Tree Algorithms
e Prim’s Algorithm
e Kruskal's Algorithm
o Application of Spanning Tree
* Civil Network Planning
= Computer Network Routing Protocol
» Cluster Analysis
» Handwriting Recognition
* Image Segmentation

o Examples
1. Write the total number of spanning trees possible for a complete graph with 6 vertices.
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Consider a complete undirected graph with vertex set {0, 1, 2, 3, 4}. Entry Wij in the
matrix W below is the weight of the edge {i, j}. What is the minimum possible weight of
a spanning tree T in this graph such that vertex 0 is a leaf node in the tree T?

(01 8 1 4)

1 0 12 4 9
W=/8 12 0 7 3
1 4 7 02
4 9 3 2 0/

Let (u,v) be a minimum-weight edge in a graph G. Show that (u,v) belongs to some

minimum spanning tree of G.

e Suppose that T is a Minimum Spanning Tree, which does not include the smallest

edge, E.

Add E to T. Now a circle C is formed.

This graph will remains connected if an edge is removed from the circle C.

So remove an edge E’(except E) from C which also belongs to T

This operation would result a new spanning tree whose weight is <= weight of T.

We have a contradiction. Hence, proved.

Let G be a weighted undirected graph with distinct positive edge weights. If every edge

weight is increased by same value, will the minimum cost spanning tree change. Justify

your answer

e The Minimum Spanning Tree doesn’t change. In Kruskal’s algorithm, we will sort
the edges first. [F we increase all weights, then order of edges won’t change. So, MST
does not change.

e Minimal Cost Spanning Tree Computation
o Kruskal’s Algorithm.

Kruskal’s Algorithm builds the spanning tree by adding edges one by one into a growing
spanning tree.

Kruskal's algorithm follows greedy approach as in each iteration it finds an edge which
has least weight and add it to the growing spanning tree

In this algorithm, the edges of the graph are considered in the increasing order of cost.

If the selected edge will form a cycle, then discard it.

This selection process continues until there are n-1 edges.

Algorithm Kruskals(E, cost, n, t)
{
Construct a heap out of edge costs using Heapify();
fori=1tondo
parent[i] = -1;
i=0;
mincost = 0.0;
while (i < n-1) and (heap not empty) do
{
Delete a minimum cost edge (u, v) from the heap and reheapify using Adjust();
j = Find(u);
k = Find(v);
if j # k then
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{
i=it+l;
tli, 1] = u; tli, 2] = v;
mincost = mincost + cost[u, v];
Union(j, k);

}

}
if i # n-1 then

Write (“No Spanning Tree”);
else

return mincost;

}

E is the set of edges and n is the number of vertices in G.
cost[u,v] is the cost of edge (u, v).

t is the set of edges in the minimum cost spanning tree.
The final cost is returned

= Heapify() is used to construct a minheap based on the edge cost of G.

= Adjust() is used to reconstruct a minheap if there is a deletion occurs.

= [Initially all vertices are belongs to different sets. Find() returns the set number of that
particular vertex. j and k are the set number of vertex u and v respectively.

* [If j=k means vertex u and v are belongs to the same set. Inclusion of (u, v) should
definitly form a cycle. So discard it.

= [f j#k means vertex u and v are belongs to different set. Inclusion of (u, v) will not form a
cycle. So add it to the minimum spanning tree edge list.

* Finally there are n-1 edges, then retrun it. Otherwise there is no spanning tree.

o Complexity
* The edges are maintained as a minheap, then the next edge to consider can be obtained in
O(log |E|) time.
= Construction of heap itself takes O(|E|) time.
= Overall complexity of Kruskal’s algorithm is O(|E| log|E|).

o Example

e Construct the minimum spanning tree for the given graph using Kruskal’s Algorithm
28
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 Step 1 | Step2

Step 5 Step 6

This is the minimum cost spanning tree.
mincost= 10 + 25 +22 + 12+ 16 + 14=99

o Examples
1. Find the number of distinct minimum spanning trees for the weighted graph below

Y
2. Consider a weighted complete graph G on the vertex set {vi,va,...,vs} such that the

weight of the edge (vi,v)) is 2|i-j|. Find the weight of a minimum spanning tree of G.

3. Anundirected graph G=(V, E) contains n ( n > 2 ) nodes named v,vs,...,vn,. Two vertices
v;,vj are connected if and only if 0 < [i — j| <= 2. Each edge (v;,vj) is assigned a weight i +
j- What will be the cost of the minimum spanning tree (as a function of n) of such a graph
with n nodes?

4. Apply Kruskal’s algorithm on the graph given below.
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5. Consider a complete undirected graph with vertex set {0, 1, 2, 3, 4}. Entry wij in the
matrix W below is the weight of the edge {i, j}. What is the Cost of the Minimum
Spanning Tree T using Kruskal’s Algorithm in this graph such that vertex 0 is a leaf node
in the tree T?

/O 1 8 1 4)

1 0 12 4 9
W=/8 12 0 7 3
1 4 7 0 2

LY 4 9 3 2 O 7

7. Compute the Minimum Spanning Tree and its cost for the following graph using
Kruskal’s Algorithm. Indicate each step clearly

¢ Single Source Shortest Path Algorithms
o The shortest path problemis the problem of finding a path between two vertices in
a graph such that the sum of the weights of its constituent edges is minimized.
o Different shortest path problems are:
* Single Source Shortest Path Problem:
e Given a connected weighted graph G=(V,E), find the shortest path from a given
source vertex s to every other vertices (V-{s}) in the graph.
e The weight of any path(w(p)) is the sum of the weights of its constituted edges.
e The weight of the shortest path from u yo v = min{w(p): p is a path from u to v}
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* Single Destination Shortest Path Problem: To find shortest paths from all vertices in
the directed graph to a single destination vertex v
= All Pairs Shortest Path Problem: To find shortest paths between every pair of
vertices in the graph

o Single Source Shortest Path Algorithms are:
= Dijkstra’s Algorithm
* Bellman Ford Algorithm

o Dqkstra s Algorithm
Given a graph and a source vertex S in graph, find shortest paths from S to all vertices in
the given graph.
* Algorithm Dijkstra(G,W, S)
1. For each vertex v in G
1.1 distance[v] = infinity
1.2 previous[v] = Null
2. distance[S] =
Q = set of vertices of graph G
4. While Q is not empty
4.1 u = vertex in Q with minimum distance
4.2 remove u from Q
4.3 for each neighbor v of u which is still in Q
4.3.1 alt = distance[u] + W(u,v)
4.3.2 if alt < distance[v]
4.3.2.1 distance[v] = alt
4.3.2.2 previous[v] = u
5. Return distance[], previous|]
* Complexity
e The complexity mainly depends on the implementation of Q
e The simplest version of Dijkstra's algorithm stores the vertex set Q as an ordinary
linked list or array, and extract-minimum is simply a linear search through all vertices
in Q. In this case, the running time is O(E + V?) = O(V?)
e Graph represented using adjacency list can be reduced to O(E log V) with the help of
binary heap.
o Examples
1. Is it possible to find all pairs of shortest paths using Dijkstra’s algorithm? Justify
2. Find the shortest path from s to all other vertices in the following graph using Dijkstra’s
Algorithm

w

2
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3. Let G be a weighted undirected graph with distinct positive edge weights. If every edge
weight is increased by same value, will the shortest path between any pair of vertices
change. Justify your answer
e The shortest path may change.
o There may be different paths from s to t.
Let shortest path(Path-1) be of cost 15 and has 5 edges.
Let there be another path(Path-2) of cost 25 and has 2 edges.
All edge costs are increased by 10.
Path-1 cost is increased by 5*10 and becomes 15 + 50=65.
Path-2 cost is increased by 2*10 and becomes 25 + 20=45
Now Path-1 cost > Path-2 cost
o So the shortest path may change.
4. In a weighted graph, assume that the shortest path from a source ‘s’ to a destination ‘t’ is
correctly calculated using a shortest path algorithm. Is the following statement true? If we

increase weight of every edge by 1, the shortest path always remains same. Justify your
answer with proper example.

o o o O
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